If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+24x+46=0
a = 2; b = 24; c = +46;
Δ = b2-4ac
Δ = 242-4·2·46
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{13}}{2*2}=\frac{-24-4\sqrt{13}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{13}}{2*2}=\frac{-24+4\sqrt{13}}{4} $
| a(49-a)=180 | | 9x²+8x+15=0 | | 18Dx27,4E=512,754 | | X=-5+2t-3t2 | | r^2-15r-18.75=0 | | X^2×100x-400=0 | | y=-0.5*4^2+5*4-8 | | 72=8/3^x | | 3^x+64.2^(-x)-20=0 | | x+1=2222922828288282282882 | | 8/3^x=4 | | x+120+130+90+80=360 | | x+120+130+90+80=360 | | -x³+7x²-20x+48=0 | | -x³+7x²-20x+48=0 | | 80=8(2x4) | | 80=8(2x4) | | 1+8x=-2 | | -2-15b=-32 | | -13-17a=21 | | -15+4x=17 | | 2s^2+6s+5=0 | | 6^3x+12=1/216 | | -8x=8+8 | | 15(7x=300) | | 5(7x=300) | | 3x+-5=8x+-9 | | 2(1/3)d=28 | | 12+2x=18-3x | | 250=350+x | | 6x-4x+10=6 | | |4x-4|=-2 |